该武器系统是由位于图拉的俄联邦仪器设计局在阿尔卡季·G·希普诺夫(Arkady G. Shipunov)的监督以下所研发。该项目的工作始于1970年代。1986年2月,苏联陆军采用了克拉斯诺波尔系统,编号为3OF39(俄语:3ОФ39;炮弹本身),并开始在伊茨玛希工厂和伊兹梅克工厂进行大量生产。[13]第一批成品于1995年交付给俄罗斯武装部队。[14]另外,炮弹的激光半主动寻的头(GOS)则是由LOMO公司所生产;[15]寻的头由进步研究及生产中心(现为乌克兰涅任NEC Progress)生产、1D15(或1D20)激光目标指示器由波利乌斯科学研究所生产,以及车载设备由物理问题科学研究院。
The concept for Copperhead was originally made in 1970 by engineers at the US Army's Rodman Laboratories, with feasibility studies conducted in 1971. In 1972 development contracts were awarded to Martin Marietta and Texas Instruments. After testing Martin Marietta was chosen for continued development through the 1970s.[2]
US Army : Usable : 16,095 - Unusable 0 - Total : 16,095 USMC : Usable : 1,873 - Unusable : 894 - Total : 2,767 Description[edit]
At 62.4 kilograms (137.6 lb) and 140 centimetres (54 in) long, Copperhead is longer and heavier than traditional 155mm ammunition.[4]
The warhead assembly consists of a shaped charge loaded with 6.69 kilograms (14.75 lb) of Composition B.
For Copperhead to function, the target must be illuminated with a laser designator. Once the laser signal is detected, the on-board guidance system will operate the steering vanes to maneuver the projectile to the target. The Copperhead targeting logic is designed to ensure (1) that the optical system will always be able to detect the target, and (2) that once the target has been detected there will be sufficient time and velocity to maneuver to hit the target. Copperhead must be below any cloud cover at critical parts of the trajectory, and there must be sufficient visibility to ensure that when the target is acquired the projectile will have sufficient time to maneuver.
Modes of operation[edit] Cross section of M712 Copperhead
Copperhead has two modes of operation: Ballistic mode and glide mode. Ballistic mode is used where the cloud ceiling is high and visibility is good. When the projectile is 3,000 meters from the target, the guidance vanes extend, the target is acquired, and then the on-board guidance system adjusts the guidance vanes to maneuver onto the target.
Glide mode is used when the cloud ceiling and/or the visibility is too low to permit the use of the ballistic mode. A glide mode trajectory consists of two phases: a ballistic phase and a glide phase. At a predetermined point along the trajectory, the guidance vanes extend and there is a transition from ballistic phase to glide phase. Glide phase targeting logic is designed to ensure the largest possible angle of fall permitted by the cloud cover and the visibility. The target is acquired when the projectile is close enough to detect the laser illumination or when the projectile emerges from the cloud cover, whichever event occurs later in the trajectory. When a trajectory solution has been obtained, time-to-target and terminal velocity are checked to ensure that there will be enough time to maneuver and that the projectile is aerodynamically stable—that it will not stall while maneuvering.
Initially the laser designation was intended to be performed by the MQM-105 Aquila pilotless drone.[5]
Copperhead was used in Operation Desert Storm,[6] with 90 rounds fired against hardened Iraqi fortifications and radar stations. One of these strikes caused an Iraqi unit to surrender.[1]
Lebanese Armed Forces fired several hundred Copperhead shells at ISIL targets in east Lebanon during the Qalamoun offensive (July–August 2017). At least five technicals, five occupied buildings, and several troop formations were struck with precision. The US replenished 827 shells after the successful completion of the offensive.[7][vague]
雷神网站说less than 10-meter accuracy is achieved 这些都比较客观
The Excalibur Global Positioning System (GPS)-guided projectile provides accurate, first round fire-for-effect capability to current and future 155mm howitzers. Excalibur’ less than 10-meter accuracy is achieved with a highly maneuverable GPS-guided airframe.
根据维基百科:https://en.m.wikipedia.org/wiki/M1156_Precision_Guidance_Kit
假定现代炮兵对炮兵的炮战是分散阵地,炮与炮之间距离500米。
美国GPS榴弹炮导引头最大射程30公里CEP为20米(最新型号M1156E2/A1为10米)。而没有导引头的CEP是256米。如果20米为目标绝对摧毁CEP,那美国制导炮弹一发摧毁。假定俄国炮弹精度与美国无制导炮弹相同,256米,那要绝对摧毁必须覆盖半径256米的面积,其半径是制导炮弹的12倍,也就是要射近500发。而榴弹炮射速是有限制的,一般一分钟1-2发,过频炮管会发热,强度降低,炸膛。M777是2发。要实现对等摧毁,你只能用500门大炮对1门发射制导炮弹的大炮。也就是说,俄军10比1的火炮优势变成1比5的火炮劣势
关于GPS jamming,也有anti-jamming技术。估计美国GPS定位武器设计时不会没考虑GPS jamming的问题,是驴是马拉出来溜溜。海玛斯就是GPS定位,好像效果不错。
1000枚制导炮弹如果能打中500门火炮,应该能改变被俄军大炮开路,轰平推进的局面。
2К25«Краснополь»
2K25“克拉斯诺波尔”(英语:2K25 Krasnopol,俄语:2К25«Краснополь»;Краснополь意为:红土地)[9][10][11]是一系列由前苏联设计局俄联邦仪器设计局所研制和生产的152/155毫米加农炮发射、尾翼稳定、弹尾排放助推式半自动激光精确制导炮弹武器系统。2K25是俄罗斯国防部火箭炮兵装备总局(GRAU)对整个系统的代号;而北约尚未为其给予代号。
该制导炮弹会自主地向着激光指标器所照射的点“归的”,而指标器通常由陆基炮兵观察员所操作。“克拉斯诺波尔”炮弹主要是由2S3“金合欢”和2S19 MSTA-S等苏联自行榴弹炮所发射,旨在从第一发就对小型地面目标、装甲目标和军事目标,例如坦克、其他直射武器、强点或是观察员所发现的其他重要目标进行毁灭性打击。它既可以用于静止目标,也可以用于运动目标(前提是这些目标都保持在观察员的视野范围以内)。
俄罗斯军方曾使用该制导炮弹,对付先前(2018年1月6日)以无人机袭击俄罗斯驻叙利亚赫梅明空军基地的敌人。[12]
目录 1研发历程 2整体描述 3衍生型 3.12K25“克拉斯诺波尔” 3.22K25M“克拉斯诺波尔”-M 3.3KM-1M“克拉斯诺波尔”-M2 3.4GP1与GP6 4使用国 5参见 6注释 7资料来源 8参考文献 9外部链接 研发历程[编辑]该武器系统是由位于图拉的俄联邦仪器设计局在阿尔卡季·G·希普诺夫(Arkady G. Shipunov)的监督以下所研发。该项目的工作始于1970年代。1986年2月,苏联陆军采用了克拉斯诺波尔系统,编号为3OF39(俄语:3ОФ39;炮弹本身),并开始在伊茨玛希工厂和伊兹梅克工厂进行大量生产。[13]第一批成品于1995年交付给俄罗斯武装部队。[14]另外,炮弹的激光半主动寻的头(GOS)则是由LOMO公司所生产;[15]寻的头由进步研究及生产中心(现为乌克兰涅任NEC Progress)生产、1D15(或1D20)激光目标指示器由波利乌斯科学研究所生产,以及车载设备由物理问题科学研究院。
自2002年开始,它新增了120毫米和122毫米口径基托洛夫(Kitolov)-2激光制导系统。[16]
克拉斯诺波尔项目的155毫米衍生型:K155(及其改进型K155M)亦研发出来,以投入商业市场,可以从G6和M109A6“帕拉丁”、FH70、TRF1等自行榴弹炮所发射。除了俄罗斯以外,克拉斯诺波尔亦由中国兵器工业集团属下的北方工业所生产。
整体描述[编辑]2K25“克拉斯诺波尔”系统[17]是由3OF39制导炮弹,9E421半主动激光光学寻的头,一具1D22、1D20、或1D15激光目标指标器(LTD;兼备测距仪的功能)和1A35射击同步系统所组成。激光指示系统的射程为5千米(3.11英里),而炮弹本身的射程为20千米(12.43英里)[18],目标搜寻器半径则是1千米(0.62英里)。[17]两段式炮弹分为以下多个部分:目标搜寻器、制导模组、战斗部和后舱。搜寻器和制导模组形成存储在密封的容器当中的单个组件,而战斗部及其尾部也是如此。这样就可以将该超大型炮弹与传统的自行榴弹炮当中现有的弹药容器兼容并在其中装填与运输。这两个组件在击发以前即时连接以后就可发射出去接。
系统功能如下。观察员确定目标的位置(例如地图坐标或方位以及距其自身位置的距离),确保其激光目标指示器可以“标记”目标并且使用克拉斯诺波尔向目标请求或下令向目标执行射击任务。然后将火炮对准目标位置,然后发射制导炮弹。击发组件使用其1A35K指挥设备、通过通信链路向观察员发送信号,以确认将击发了的炮弹射向1A35I观察站设备所指示的目标。然后,使用激光目标指示器向目标照射,飞行途中的炮弹会检测到由目标所反射的辐射激光能量,而导航系统会将炮弹制导至最大入射能量点——以攻顶模式打击指定目标。光学制导头的虹膜受到被帽所保护,而该被帽会在击发时由机械式计时器所摘下。而制导模组包含惯性参考系统、动力来源、多台电动机和控件,以及四片用于执行指挥制导信号的折叠式前翼。战斗部是高爆破片型,由于炮弹的陡峭轨迹,也可用于打击重型装甲载具(例如坦克),这使得它可以击破大多数载具以上相对地较薄弱的顶部装甲。战斗部后方是一具后舱,里面装有四片折叠式稳定主翼。克拉斯诺波尔系统还可以使用单具激光指标器指示多门(装有该系统的)火炮向单一个目标作出炮弹齐射。
从标准线膛炮管发射时,前导带上的摩擦轴承可降低炮弹的旋转速度。这对于校正系统的正常运行是必需的手段。为了增加战斗部量,弹药的外壳为薄壁。通过重新分配火药燃气的增压压力,可以确保在弹尾排放处于过载时保持弹体的几何形状。光学制导头覆盖的保护盖(以防止污染和损坏),会在飞行途中自行掉落。
消灭初始目标以后,激光目标指标器操作员可以请求或下令另一个目标。如果这些随后的目标靠近在一起,则它们应位于上风向(相对于先前的目标),以减少烟雾和灰尘对指示器的干扰。
克拉斯诺波尔能够击中速度高达36千米每小时(22.37英里每小时)的目标。
衍生型[编辑] 2K25“克拉斯诺波尔”[编辑]克拉斯诺波尔(3OF39)的最初型号,设计用于152毫米(5.98英寸)口径的前苏联大炮系统,例如D-20、2S3“金合欢”、2A65“Msta-B”。克拉斯诺波尔搭载了20.5千克(45.19英磅)高爆破片战斗部。整枚导弹重达50千克(110.23英磅)。但是,其长度却导致其与2S19 MSTA-S 152毫米自行火炮的自动装弹机不兼容。
2K25M“克拉斯诺波尔”-M[编辑]克拉斯诺波尔-M(3OF39M)是微型化炮弹版本,是在1990年代中期,由俄联邦仪器设计局的希普诺夫团队利用120毫米基托洛夫-2M精确制导炮弹的设计中获得的新型电子技术所研发而成。(因此在构造与目的方面相似;在本质上,这是克拉斯诺波尔的小型化型号,可搭载于2S9“秋牡丹”120毫米自走迫击炮以上使用,命名为30F69;至于相关的122毫米榴弹炮炮弹,则命名为基托洛夫-2M 30F69M)它的长度较短,可以搭载在配备了自动装弹器的自行火炮以上使用,而不必将其分解为两部分。它亦具有转变为155毫米(6.1英寸)口径的功能,这使得它可装填于北约标准的155毫米口径榴弹炮以上使用。除了减少总长度以外,克拉斯诺波尔-M还为光学制导头提供了不同的保护盖。
KM-1M“克拉斯诺波尔”-M2[编辑]克拉斯诺波尔-M2是一款在克拉斯诺波尔-M的基础上进行进一步研发的155毫米炮弹,设计用于打击装甲目标。它在其轨迹的末期使用半主动激光(SAL)制导系统。
GP1与GP6[编辑]克拉斯诺波尔的中国制版本。[19][20]最初1,000枚克拉斯诺波尔和克拉斯诺波尔-M炮弹是在1999年至2000年之间卖给中国。同年3月,北方工业获得特许可在本土生产。[21]GP1对应2K25克拉斯诺波尔而GP6则是2K25M克拉斯诺波尔-M。
使用国[编辑] 阿尔及利亚 中国 法国[22][23] 印度:从1999年到2002年交付了3000枚克拉斯诺波尔-M,总值约为1.11亿美元。[15][24]; 俄罗斯联邦 叙利亚 委内瑞拉:委内瑞拉计划在2006年中期进行克拉斯诺波尔-M的试射,因此委内瑞拉有望决定购买首批克拉斯诺波尔系统。[25] 参见[编辑] 基托洛夫制导炮弹 基托洛夫-2M制导炮弹2K25克拉斯诺波尔制导炮弹[编辑] 维基百科,自由的百科全书 跳到导航跳到搜索
2К25«Краснополь»
2K25“克拉斯诺波尔”(英语:2K25 Krasnopol,俄语:2К25«Краснополь»;Краснополь意为:红土地)[9][10][11]是一系列由前苏联设计局俄联邦仪器设计局所研制和生产的152/155毫米加农炮发射、尾翼稳定、弹尾排放助推式半自动激光精确制导炮弹武器系统。2K25是俄罗斯国防部火箭炮兵装备总局(GRAU)对整个系统的代号;而北约尚未为其给予代号。
该制导炮弹会自主地向着激光指标器所照射的点“归的”,而指标器通常由陆基炮兵观察员所操作。“克拉斯诺波尔”炮弹主要是由2S3“金合欢”和2S19 MSTA-S等苏联自行榴弹炮所发射,旨在从第一发就对小型地面目标、装甲目标和军事目标,例如坦克、其他直射武器、强点或是观察员所发现的其他重要目标进行毁灭性打击。它既可以用于静止目标,也可以用于运动目标(前提是这些目标都保持在观察员的视野范围以内)。
俄罗斯军方曾使用该制导炮弹,对付先前(2018年1月6日)以无人机袭击俄罗斯驻叙利亚赫梅明空军基地的敌人。[12]
目录 1研发历程 2整体描述 3衍生型 3.12K25“克拉斯诺波尔” 3.22K25M“克拉斯诺波尔”-M 3.3KM-1M“克拉斯诺波尔”-M2 3.4GP1与GP6 4使用国 5参见 6注释 7资料来源 8参考文献 9外部链接(5,401 lbs)
行军重量: 3,100 kg
(6,834 lbs)
膛线: 2,670 mm / 21
要么你证明在叙利亚没有使用过,要么你证明在叙利亚用过但没有击中目标,那当然可以证明你对
中国军队也没有这个问题,无人机操作员别说呆在炮兵指挥所,就是呆在炮阵地,吃住在火炮边上都可以。没空调甚至没睡袋都可以坚持很长时间。另外中国也研发成功了卫星制导炮弹,但考虑到战时可能卫星信号被干扰,所以不怕干扰的激光制导炮弹仍有一席之地。下面是中国媒体的报道,内容仅供参考
目前,国产惯导+卫星制导迫击炮弹已经实现系列化。口径从120毫米到100毫米,82毫米和60毫米迫击炮弹都可以应用,其中60毫米制导迫击炮弹,是世界最小的制导炮弹。这个系列制导迫炮弹,能够以精确火力支援合成营和步兵连的作战。这种修正引信技术,采用了与美国PGK炮弹(M1156精确制导组件)非常相似的技术方案。使用惯性+北斗卫星定位制导,引信集成了天线、固定舵、卫星接收模块、地磁模块等组件,体积小,只比普通的引信体积略大,使用标准的引信接口,旋上普通炮弹就能变成一枚“聪明”的炮弹 制导迫击炮弹的精度比普通弹提高30倍以上,CEP指标5~10米,高于美军现役PGK引信的30米精度,达到了“神剑”制导炮弹的水平。而普通的120毫米迫击炮,最大射程6-7公里,最大射程误差可能达到100米左右。与美国先是鄙视激光半主动制导炮弹,然后不得不再次回到激光半主动技术的弯路不同,中国军队认为半主动激光制导炮弹具有很多优势,能够打击战场上几乎所有目标,不受目标背景对比度限制,具有较高的命中率(目前为止,地球上现有的精确制导弹药类型中,精度最高的还是激光制导弹药),研发成本比较低,技术风险比较小。与美国相反,中国是先全力发展激光半主动制导炮弹,然后在此基础上研制卫星制导、毫米波制导等多模制导技术。 我军在1994年从俄罗斯正式引进了152毫米“红土地”激光制导炮弹,马上就积极进行国产化仿制,在“十五”期间仿制成功,国产化的红土地炮弹逐步装备炮兵部队。根据2001年新华社发表的文章《目击中国新型火炮试验》,可以确定国产化红土地激光制导炮弹于2000年国家靶场鉴定,2001年底定型。中国研制的激光制导炮弹涵盖了目前我军炮兵部队的主要大口径火炮,使我军炮兵中远程精确打击能力大幅提升。在2008年第七届珠海航展上,我国展出了GP-1型155毫米激光制导炮弹,显示出中国军事工业的强大研发能力,这种炮弹比俄制红土地精度更高、威力更大,目标照射/测距机质量更小,目前这种炮弹已经成功出口数千发至阿联酋、科威特等国。From Wikipedia, the free encyclopedia Jump to navigationJump to search
system
The M712 Copperhead is a 155 mm caliber cannon-launched guided projectile (CLGP). It is a fin-stabilized, terminally laser guided, explosive shell intended to engage hard point targets such as tanks, self-propelled howitzers or other high-value targets. It may be fired from different artillery pieces, such as the M114, M109, M198, M777 and CAESAR howitzers. The projectile has a minimum range of 3 km and a maximum range of 16 km.[1]
Contents 1Development 2Description 3Modes of operation 4Combat history 5Operators 5.1Current operators 5.2Former operators 6See also 7References 8Sources Development[edit]The concept for Copperhead was originally made in 1970 by engineers at the US Army's Rodman Laboratories, with feasibility studies conducted in 1971. In 1972 development contracts were awarded to Martin Marietta and Texas Instruments. After testing Martin Marietta was chosen for continued development through the 1970s.[2]
Inventories of March 1, 1995:[3]
US Army : Usable : 16,095 - Unusable 0 - Total : 16,095 USMC : Usable : 1,873 - Unusable : 894 - Total : 2,767 Description[edit]At 62.4 kilograms (137.6 lb) and 140 centimetres (54 in) long, Copperhead is longer and heavier than traditional 155mm ammunition.[4]
The warhead assembly consists of a shaped charge loaded with 6.69 kilograms (14.75 lb) of Composition B.
For Copperhead to function, the target must be illuminated with a laser designator. Once the laser signal is detected, the on-board guidance system will operate the steering vanes to maneuver the projectile to the target. The Copperhead targeting logic is designed to ensure (1) that the optical system will always be able to detect the target, and (2) that once the target has been detected there will be sufficient time and velocity to maneuver to hit the target. Copperhead must be below any cloud cover at critical parts of the trajectory, and there must be sufficient visibility to ensure that when the target is acquired the projectile will have sufficient time to maneuver.
Modes of operation[edit] Cross section of M712 CopperheadCopperhead has two modes of operation: Ballistic mode and glide mode. Ballistic mode is used where the cloud ceiling is high and visibility is good. When the projectile is 3,000 meters from the target, the guidance vanes extend, the target is acquired, and then the on-board guidance system adjusts the guidance vanes to maneuver onto the target.
Glide mode is used when the cloud ceiling and/or the visibility is too low to permit the use of the ballistic mode. A glide mode trajectory consists of two phases: a ballistic phase and a glide phase. At a predetermined point along the trajectory, the guidance vanes extend and there is a transition from ballistic phase to glide phase. Glide phase targeting logic is designed to ensure the largest possible angle of fall permitted by the cloud cover and the visibility. The target is acquired when the projectile is close enough to detect the laser illumination or when the projectile emerges from the cloud cover, whichever event occurs later in the trajectory. When a trajectory solution has been obtained, time-to-target and terminal velocity are checked to ensure that there will be enough time to maneuver and that the projectile is aerodynamically stable—that it will not stall while maneuvering.
Initially the laser designation was intended to be performed by the MQM-105 Aquila pilotless drone.[5]
Combat history[edit]Copperhead was used in Operation Desert Storm,[6] with 90 rounds fired against hardened Iraqi fortifications and radar stations. One of these strikes caused an Iraqi unit to surrender.[1]
Lebanese Armed Forces fired several hundred Copperhead shells at ISIL targets in east Lebanon during the Qalamoun offensive (July–August 2017). At least five technicals, five occupied buildings, and several troop formations were struck with precision. The US replenished 827 shells after the successful completion of the offensive.[7][vague]
Operators[edit] Map with M712 operators in blue with former operators in red Current operators[edit] United States Egypt Jordan Lebanon Taiwan Former operators[edit] Australia – now replaced by SMArt 155.[8] See also[edit] M982 Excalibur M1156 Precision Guidance Kit Krasnopol XM395 Precision Guided Mortar Munition Bofors/Nexter Bonus Strix mortar round References[edit] ^ Jump up to:a b Ripley, Tim (1992). The new illustrated guide to the modern US Army. Salamander Books Ltd. pp. 114–115. ISBN 0-86101-671-8. ^ Pretty, Ronald (1978). Jane's pocket book of missiles. London: Macdonald and Jane's. pp. 65–66. ISBN 978-0-354-01069-6. ^ "Industrial Base: Inventory and Requirements for Artillery Projectiles". ^ http://www.ausairpower.net/SP/DT-SPH-0705.pdf[bare URL PDF] ^ p.43, Yenne & Yenne ^ "M712 Copperhead". www.globalsecurity.org. ^ "Archived copy". Archived from the original on 17 February 2020. Retrieved 7 February 2018. ^ "DEFENCE PURCHASES NEW ANTI-TANK ARTILLERY ROUND". Australian Department of Defence. Archived from the original on 11 October 2007. Retrieved 9 December 2010. Sources[edit] Yenne, William, Yenne, Bill, Attack of the Drones: A History of Unmanned Aerial Combat, Zenith Imprint, 2004 ISBN 0-7603-1825-5 Categories: Artillery shells Anti-tank rounds Military equipment introduced in the 1980s Navigation menuCurrent operators[edit] United States Egypt Jordan Lebanon Taiwan Former operators[edit] Australia – now replaced by SMArt 155.[8]
这样吧,你拿支激光枪边走边照100米的目标看看是怎么回事。
据网上美国陆军最新资料,XM1113/M982 Excalibur射程可达65公里,由榴弹炮发射,正常射速每分钟2发,最高射速每分钟7发,平均误差2.2米.大家可以到youtube上去看:/watch?v=GZ2XF_gRgRU
https://web.archive.org/web/20071219094608/http://www.raytheon.com/products/stellent/groups/public/documents/content/cms01_054624.pdf
https://en.m.wikipedia.org/wiki/M982_Excalibur
The Excalibur Global Positioning System (GPS)-guided projectile provides accurate, first round fire-for-effect capability to current and future 155mm howitzers. Excalibur’ less than 10-meter accuracy is achieved with a highly maneuverable GPS-guided airframe.