看帖神器
未名空间
追帖动态
头条新闻
每日新帖
最新热帖
新闻存档
热帖存档
文学城
虎扑论坛
未名空间
北美华人网
北美微论坛
看帖神器
登录
← 下载
《看帖神器》官方
iOS App
,体验轻松追帖。
上海85后女科学家何以登上《自然》
查看未名空间今日新帖
最新回复:2021年3月14日 1点16分 PT
共 (3) 楼
返回列表
订阅追帖
只看未读
更多选项
阅读全帖
只看图片
只看视频
查看原帖
f
foofy
3 年多
楼主 (未名空间)
http://news.sciencenet.cn/htmlnews/2021/3/454536.shtm
组建实验室仅三年多,解开植物免疫领域长期待解的科学谜团
上海85后女科学家何以登上《自然》
回国组建实验室仅三年多,带领一支平均年龄只有26岁的年轻科研团队在植物免疫学领域取得重要进展——11日凌晨,85后上海女科学家、中国科学院分子植物科学卓越创新中心研究员辛秀芳及其团队登上国际顶尖学术期刊《自然》杂志。这篇题为“NLR蛋白
介导的植物免疫需要模式识别受体”的论文,解决了植物免疫领域一个长期待解的科学谜团,为培育优良持久抗病的农作物提供了新思路。
谈及自己科研生涯的快速“起跑”,辛秀芳说,这背后离不开上海自由宽松的学术氛围和对年轻科学家的信任与支持。尤其难得的是,得益于中国科学院分子植物科学卓越创新中心国际化的科研环境,通过良好沟通,此次团队论文与国际同行的相关成果在同一期《自然》杂志上 “背靠背”发表,“如果一味抢先,可能会变成恶性竞争,现在则
成了学术上的一次良性互动”。
打破惯性思维,建立植物免疫新架构
植物在与病原微生物的长期博弈中,进化出了两层免疫系统:第一层免疫系统被称为
PTI,当病原微生物入侵植物时,细胞膜表面的受体蛋白会识别出病原菌所携带的一些
分子,从而激活PTI。作为对策,成功入侵的病原菌会向植物细胞分泌一类毒性蛋白来
对抗PTI,以便于自己侵染植物。此时,植物会通过细胞内另一类受体蛋白感知某些毒
性蛋白,触发植物的第二层免疫系统——ETI,激活更强的免疫行动来抵抗病原菌的攻
击。
长期以来,绝大多数实验室都是对两个系统分别进行研究。它们会否协同作战,成了一个待解的巨大谜团。
2017年完成博士后研究回国,辛秀芳来到上海,在中国科学院分子植物科学卓越创新中心组建起自己的实验室。在一次实验中,PTI免疫缺失的植物引起了研究组的注意——
它的ETI免疫功能也变得低下。
“这两者之间有关联吗?”辛秀芳带领年轻团队一路追寻下去。他们发现,ETI可以促
使植物产生大量的活性氧产生酶RBOHD,而PTI则负责将这种酶激活,从而产生大量活性氧,“这就好比ETI负责生产大批炸弹,而PTI负责点燃炸弹”。
有趣的是,研究组还发现,ETI还能够给PTI“加油鼓劲”,通过增强PTI核心蛋白组分
表达,从而诱导PTI更加持久的免疫输出。近年来,全球气候变化,农作物病害频发,
给全球粮食安全带来了严重影响。该发现不仅揭开了植物不同免疫系统间的亲密关系,建立了新的植物免疫系统架构模型,而且为后续培养优良持久抗病农作物品种提供了新思路。
摒弃急功近利,与国际同行良性互动
仅用三年多,就在《自然》杂志上发表文章,辛秀芳科研生涯的“起跑”可谓速度超群。她说,当初将中科院分子植物卓越中心作为科研起步的第一选择,看中的是这里完善的研究平台,以及自由宽松且国际化的学术氛围。
辛秀芳应聘的中科院—英国约翰·英纳斯中心,是分子植物卓越中心与英国联合成立的国际化学术机构,采用五年一次的国际化评估。中心没有给年轻科学家压任何“短平快”的成果指标,他们可以用五年时间埋头打磨实验室,潜心探索重要科学问题。
中科院分子植物卓越中心副主任王佳伟告诉记者,前来应聘时,辛秀芳已在植物免疫领域崭露头角。而为优秀年轻学者营造适合成长的科研环境,一直是中心努力追寻的方向。事实上,在辛秀芳入职的最初一年多时间里,研究组的探索一直找不到突破点。她回忆说,当时中心为研究组提供了超过120平方米的宽敞实验室和充足的科研经费,“虽
然科研遇到瓶颈是常态,实验过程就是不断试错,但当研究停滞不前时,大家心里的压力还是非常大”。令辛秀芳心存感激的是,中心没有追问她具体进展,“终于有一天,我们发现了ETI免疫中活性氧的产生依赖于PTI,这为课题找到了突破点。”
然而,在中心组织的一次国际交流中,辛秀芳听说另一个国外资深研究小组也在从事相关工作。国际竞争向来是基础研究中的主要压力来源,得益于中心国际化的科研环境,通过良好的沟通,辛秀芳与这位同行的研究成果在同一期《自然》上“背靠背”发表,成为针对同一科学问题的互补认知。
种子是农业的“芯片”。而植物学基础研究则是为“芯片”上的每个功能解锁背后的机理。辛秀芳表示,未来可以在不同植物,尤其是主要农作物中,深入探究这两层免疫系统的关系,以期使机理发现用于种质资源的创新。
w
wumaoqusi01
3 年多
2 楼
明年的科研大躍進報導會不會是回國僅三個月,帶領一批平均年齡十六歲的團隊?
f
foofy
3 年多
3 楼
巴子一遍都没有
【 在 wumaoqusi01 (NQFTSQJ) 的大作中提到: 】
: 明年的科研大躍進報導會不會是回國僅三個月,帶領一批平均年齡十六歲的團隊?
请输入帖子链接
收藏帖子
组建实验室仅三年多,解开植物免疫领域长期待解的科学谜团
上海85后女科学家何以登上《自然》
回国组建实验室仅三年多,带领一支平均年龄只有26岁的年轻科研团队在植物免疫学领域取得重要进展——11日凌晨,85后上海女科学家、中国科学院分子植物科学卓越创新中心研究员辛秀芳及其团队登上国际顶尖学术期刊《自然》杂志。这篇题为“NLR蛋白
介导的植物免疫需要模式识别受体”的论文,解决了植物免疫领域一个长期待解的科学谜团,为培育优良持久抗病的农作物提供了新思路。
谈及自己科研生涯的快速“起跑”,辛秀芳说,这背后离不开上海自由宽松的学术氛围和对年轻科学家的信任与支持。尤其难得的是,得益于中国科学院分子植物科学卓越创新中心国际化的科研环境,通过良好沟通,此次团队论文与国际同行的相关成果在同一期《自然》杂志上 “背靠背”发表,“如果一味抢先,可能会变成恶性竞争,现在则
成了学术上的一次良性互动”。
打破惯性思维,建立植物免疫新架构
植物在与病原微生物的长期博弈中,进化出了两层免疫系统:第一层免疫系统被称为
PTI,当病原微生物入侵植物时,细胞膜表面的受体蛋白会识别出病原菌所携带的一些
分子,从而激活PTI。作为对策,成功入侵的病原菌会向植物细胞分泌一类毒性蛋白来
对抗PTI,以便于自己侵染植物。此时,植物会通过细胞内另一类受体蛋白感知某些毒
性蛋白,触发植物的第二层免疫系统——ETI,激活更强的免疫行动来抵抗病原菌的攻
击。
长期以来,绝大多数实验室都是对两个系统分别进行研究。它们会否协同作战,成了一个待解的巨大谜团。
2017年完成博士后研究回国,辛秀芳来到上海,在中国科学院分子植物科学卓越创新中心组建起自己的实验室。在一次实验中,PTI免疫缺失的植物引起了研究组的注意——
它的ETI免疫功能也变得低下。
“这两者之间有关联吗?”辛秀芳带领年轻团队一路追寻下去。他们发现,ETI可以促
使植物产生大量的活性氧产生酶RBOHD,而PTI则负责将这种酶激活,从而产生大量活性氧,“这就好比ETI负责生产大批炸弹,而PTI负责点燃炸弹”。
有趣的是,研究组还发现,ETI还能够给PTI“加油鼓劲”,通过增强PTI核心蛋白组分
表达,从而诱导PTI更加持久的免疫输出。近年来,全球气候变化,农作物病害频发,
给全球粮食安全带来了严重影响。该发现不仅揭开了植物不同免疫系统间的亲密关系,建立了新的植物免疫系统架构模型,而且为后续培养优良持久抗病农作物品种提供了新思路。
摒弃急功近利,与国际同行良性互动
仅用三年多,就在《自然》杂志上发表文章,辛秀芳科研生涯的“起跑”可谓速度超群。她说,当初将中科院分子植物卓越中心作为科研起步的第一选择,看中的是这里完善的研究平台,以及自由宽松且国际化的学术氛围。
辛秀芳应聘的中科院—英国约翰·英纳斯中心,是分子植物卓越中心与英国联合成立的国际化学术机构,采用五年一次的国际化评估。中心没有给年轻科学家压任何“短平快”的成果指标,他们可以用五年时间埋头打磨实验室,潜心探索重要科学问题。
中科院分子植物卓越中心副主任王佳伟告诉记者,前来应聘时,辛秀芳已在植物免疫领域崭露头角。而为优秀年轻学者营造适合成长的科研环境,一直是中心努力追寻的方向。事实上,在辛秀芳入职的最初一年多时间里,研究组的探索一直找不到突破点。她回忆说,当时中心为研究组提供了超过120平方米的宽敞实验室和充足的科研经费,“虽
然科研遇到瓶颈是常态,实验过程就是不断试错,但当研究停滞不前时,大家心里的压力还是非常大”。令辛秀芳心存感激的是,中心没有追问她具体进展,“终于有一天,我们发现了ETI免疫中活性氧的产生依赖于PTI,这为课题找到了突破点。”
然而,在中心组织的一次国际交流中,辛秀芳听说另一个国外资深研究小组也在从事相关工作。国际竞争向来是基础研究中的主要压力来源,得益于中心国际化的科研环境,通过良好的沟通,辛秀芳与这位同行的研究成果在同一期《自然》上“背靠背”发表,成为针对同一科学问题的互补认知。
种子是农业的“芯片”。而植物学基础研究则是为“芯片”上的每个功能解锁背后的机理。辛秀芳表示,未来可以在不同植物,尤其是主要农作物中,深入探究这两层免疫系统的关系,以期使机理发现用于种质资源的创新。
明年的科研大躍進報導會不會是回國僅三個月,帶領一批平均年齡十六歲的團隊?
巴子一遍都没有
【 在 wumaoqusi01 (NQFTSQJ) 的大作中提到: 】
: 明年的科研大躍進報導會不會是回國僅三個月,帶領一批平均年齡十六歲的團隊?