说说一个使用过程中发现的deepseek强于chatgpt的一点

s
shushan
楼主 (北美华人网)

就是deep think和search都开启时,它回答问题时,会把回答问题时的思考、推理、筛选过程,以及所找的网络依据的链接都列上,这样我们可以进一步阅读和校验。
这是chatgpt一直没有做到的痛点
f
frank_rainbow
这叫CoT,ChatGPT O1把这玩意当机密不愿放出来,DeepSeek R1开放了推理思路
R
Riahnna
我看了看youtube上别人做的demo。。u1s1,我对这种把思考过程列出来的真不感兴趣

很多时候我只需要个结果,例如编程,我只需要跑的动就好了,不会想花时间去理解他的思路,copy + paste就完了。跑不动我也不可能一行一行看他思路,肯定是丢个指令回去说跑不动你改改。。



s
shushan
frank_rainbow 发表于 2025-01-27 09:30
这叫CoT,ChatGPT O1把这玩意当机密不愿放出来,DeepSeek R1开放了推理思路


用的付费版,但是没有啊,ChatGPT一碰到就开始胡说,而且无从验证
s
shushan
Riahnna 发表于 2025-01-27 09:35
我看了看youtube上别人做的demo。。u1s1,我对这种把思考过程列出来的真不感兴趣

很多时候我只需要个结果,例如编程,我只需要跑的动就好了,不会想花时间去理解他的思路,copy + paste就完了。跑不动我也不可能一行一行看他思路,肯定是丢个指令回去说跑不动你改改。。





检查其推理筛选过程,同时验证信息源,对结果准确度要求高的还是很重要的,尤其作为生产力工具的时候
q
qiminxin
这不就是小学开始老师就一再强调的,解题思路必须要清晰明确。
m
microsat
shushan 发表于 2025-01-27 09:28

就是deep think和search都开启时,它回答问题时,会把回答问题时的思考、推理、筛选过程,以及所找的网络依据的链接都列上,这样我们可以进一步阅读和校验。
这是chatgpt一直没有做到的痛点

请大牛谈谈,原理和基本步骤。
M
Momo395
microsat 发表于 2025-01-27 09:45
请大牛谈谈,原理和基本步骤。

小红书和抖音上都有大量解析 基本上就是chatgpt模型是傻算 ,然后算对了说对了就给跟骨头 deepseek 不傻算那么多, 控制它只算某些路径
s
shushan
microsat 发表于 2025-01-27 09:45
请大牛谈谈,原理和基本步骤。


草牛都不是,就是普通用户
你可以等下午国内的人睡了,服务器负担轻的时候试一下,把deep think和search都激活,问自己领域专业性的问题,deepseek会把参考的搜索信息链接,思考推理过程都给出来的。个人认为这点非常好,别说免费,就是收费被chatgpt贵三倍,因为这些feature我都愿意用。
d
doublemint
Google 本身不是有个A I。那个都列文献的。。那个不行吗?
s
shushan
doublemint 发表于 2025-01-27 10:00
Google 本身不是有个A I。那个都列文献的。。那个不行吗?


你是说gemini吗? 这个没买过没用过,没听说它有推理过程啊
p
pqrs
Riahnna 发表于 2025-01-27 09:35
我看了看youtube上别人做的demo。。u1s1,我对这种把思考过程列出来的真不感兴趣

很多时候我只需要个结果,例如编程,我只需要跑的动就好了,不会想花时间去理解他的思路,copy + paste就完了。跑不动我也不可能一行一行看他思路,肯定是丢个指令回去说跑不动你改改。。




那他弄错了你也不知道并且不知道为啥……自己玩玩肯定无所谓,要是公司里面用正确性肯定还是需要保证的
a
aipple
可是我问的问题,都是ChatGPT答案比较好呀。例如问他们两者的比较。
k
kdhgle
aipple 发表于 2025-01-27 10:27
可是我问的问题,都是ChatGPT答案比较好呀。例如问他们两者的比较。

看你问的啥了,我问的问题,chatgpt 只有50% 左右的准确率,我真的是shock了。而且,你告诉它,它错了,人立时改正。问题在于,要是它是正确的,而我告诉它它错了呢?1 没有准确率,2没有节操。。。给出推理步骤就是提高准确率的过程啊!
n
niuniudabao
chatgpt是你问他他不太知道的事情之后他会给你在网上找些source。他知道的事情是要去问他他才给source
m
momo099
光从成本来说,美国人可不是要天塌了吗。。类似几亿美金搞一个大桥防护网,人家几百万人民币搞出来。 都知美国的生产率是怎么回事了。
s
shushan
那他弄错了你也不知道并且不知道为啥……自己玩玩肯定无所谓,要是公司里面用正确性肯定还是需要保证的
pqrs 发表于 2025-01-27 10:26


对,作为玩具无所谓,日常写写文章改改邮件做做ppt无所谓
但是公司里面用,还有很多重要的决策,生产,研发等作为工具的时候,能够校验推理过程,和信息源是很重要feature,这些都是真正愿意给AI付高价的客户

f
funnyorno
我手机测试让deepseek做计算机面试题它答得有模有样按照我的标准已经超过大部分面试的人了。将来防作弊这也是个大方向。
A
Aloee
同时同步比较了一下,查询几个AI modeling , 条理清晰,代码直接列出,Deepseek确实比ChatGPT强。
m
microsat
Aloee 发表于 2025-01-27 11:17
同时同步比较了一下,查询几个AI modeling , 条理清晰,代码直接列出,Deepseek确实比ChatGPT强。

能把你的问题和答案贴出来吗?
m
microsat
请问机器是如何识别你要问的问题是什么?
B
Batgirl
回复 9楼 shushan 的帖子
笑死了。。。草牛当年是说我们养了娃以后产量不足的妈妈。。。
谢谢你的分享
A
Aloee
答案挺长,只贴一个试试: A **suitability scoring model** is a type of algorithm or system designed to evaluate how well a particular option, item, or solution matches specific criteria or requirements. These models are widely used in decision-making processes across various domains, such as recruitment, product recommendations, loan approvals, and healthcare. Here’s an overview of how suitability scoring models work, their key components, and applications: --- ### **Key Components of a Suitability Scoring Model** 1. **Input Data**: - The model takes input data that describes the entity being evaluated (e.g., a job candidate, product, or loan applicant) and the criteria for suitability (e.g., job requirements, user preferences, or risk thresholds). 2. **Feature Extraction**: - Relevant features are extracted from the input data to represent the entity and criteria. For example: - In recruitment: Skills, experience, education, and certifications. - In product recommendations: User preferences, past purchases, and product attributes. 3. **Scoring Algorithm**: - A mathematical or machine learning-based algorithm computes a suitability score based on how well the entity matches the criteria. - Common approaches include: - **Rule-based systems**: Use predefined rules to assign scores (e.g., if skill X is present, add 10 points). - **Machine learning models**: Train on labeled data to predict suitability (e.g., logistic regression, decision trees, or neural networks). - **Hybrid models**: Combine rule-based and machine learning approaches. 4. **Output**: - The model outputs a suitability score, which can be: - A numerical value (e.g., 0 to 100). - A categorical label (e.g., "Highly Suitable," "Moderately Suitable," "Not Suitable"). --- ### **Types of Suitability Scoring Models** 1. **Rule-Based Models**: - Use predefined rules and weights to calculate scores. - Example: A recruitment system that assigns points for each required skill or certification. 2. **Machine Learning Models**: - Learn patterns from labeled data to predict suitability. - Example: A loan approval system that uses historical data to predict the likelihood of repayment. 3. **Hybrid Models**: - Combine rule-based logic with machine learning for more robust scoring. - Example: A product recommendation system that uses rules for basic filtering and machine learning for personalized scoring. --- ### **Applications of Suitability Scoring Models** 1. **Recruitment and Talent Matching**: - Evaluate job candidates based on skills, experience, and cultural fit. - Example: LinkedIn’s job recommendation system. 2. **Product Recommendations**: - Match products to users based on preferences, browsing history, and purchase behavior. - Example: Amazon’s recommendation engine. 3. **Loan and Credit Approval**: - Assess the suitability of loan applicants based on credit history, income, and risk factors. - Example: FICO credit scoring. 4. **Healthcare**: - Evaluate treatment options for patients based on medical history, symptoms, and genetic data. - Example: IBM Watson for Oncology. 5. **Real Estate**: - Match properties to buyers based on budget, location preferences, and amenities. - Example: Zillow’s property recommendation system. 6. **Education**: - Recommend courses or programs to students based on their interests, academic performance, and career goals. - Example: Coursera’s course recommendation system. --- ### **Steps to Build a Suitability Scoring Model** 1. **Define Criteria**: - Identify the key factors that determine suitability for the specific use case. - Example: For recruitment, criteria might include skills, experience, and education. 2. **Collect and Preprocess Data**: - Gather data that represents the entities and criteria. - Clean and normalize the data (e.g., handle missing values, encode categorical variables). 3. **Feature Engineering**: - Extract or create relevant features from the data. - Example: Convert text-based skills into numerical embeddings. 4. **Choose a Scoring Approach**: - Decide whether to use a rule-based, machine learning, or hybrid approach. 5. **Train and Validate the Model**: - For machine learning models, split the data into training and validation sets. - Train the model and evaluate its performance using metrics like accuracy, precision, recall, or F1-score. 6. **Deploy and Monitor**: - Deploy the model in a real-world environment. - Continuously monitor its performance and update it as needed. --- ### **Example: Recruitment Suitability Scoring** #### **Rule-Based Approach** ```python def calculate_suitability(candidate, job_requirements): score = 0 # Add points for matching skills for skill in job_requirements['skills']: if skill in candidate['skills']: score += 10 # Add points for experience if candidate['experience'] >= job_requirements['min_experience']: score += 20 # Add points for education if candidate['education'] >= job_requirements['min_education']: score += 15 return score # Example data candidate = {'skills': ['Python', 'SQL'], 'experience': 5, 'education': 'Master’s'} job_requirements = {'skills': ['Python', 'Java'], 'min_experience': 3, 'min_education': 'Bachelor’s'} # Calculate suitability score suitability_score = calculate_suitability(candidate, job_requirements) print(f"Suitability Score: {suitability_score}") ``` #### **Machine Learning Approach** ```python from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Example dataset # Features: [skill_match, experience_match, education_match] X = [[1, 1, 1], [1, 0, 0], [0, 1, 1], [0, 0, 0]] # 1 = match, 0 = no match y = [1, 0, 1, 0] # 1 = suitable, 0 = not suitable # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train model model = RandomForestClassifier() model.fit(X_train, y_train) # Predict suitability y_pred = model.predict(X_test) print(f"Accuracy: {accuracy_score(y_test, y_pred)}") ``` --- ### **Challenges in Suitability Scoring** 1. **Bias in Data**: - Models may inherit biases from training data, leading to unfair or inaccurate scores. 2. **Dynamic Criteria**: - Suitability criteria may change over time, requiring frequent model updates. 3. **Interpretability**: - Complex models (e.g., deep learning) may lack transparency, making it hard to explain scores. 4. **Scalability**: - Handling large datasets or real-time scoring can be computationally expensive. --- ### **Conclusion** Suitability scoring models are powerful tools for making data-driven decisions in various domains. By carefully defining criteria, selecting the right approach, and addressing challenges like bias and scalability, these models can provide valuable insights and recommendations. Whether rule-based or machine learning-driven, suitability scoring models play a critical role in optimizing decision-making processes.
o
ofwlily
Riahnna 发表于 2025-01-27 09:35
我看了看youtube上别人做的demo。。u1s1,我对这种把思考过程列出来的真不感兴趣

很多时候我只需要个结果,例如编程,我只需要跑的动就好了,不会想花时间去理解他的思路,copy + paste就完了。跑不动我也不可能一行一行看他思路,肯定是丢个指令回去说跑不动你改改。。




那要看你做什么用了。 比如写paper要找citation,目前chatgpt很多时候给的paper驴唇不对马嘴,有的paper压根不存在,估计是它自己根据关键字提取的。 如果给出推里过程,那我可以自己取舍,说不定可以提取到有用的东西。还没尝试deepseak。
s
syzheng
这周末都在测试这俩,真的惊艳啊。 这俩都给code和过程的,真的是差不多。我自己还没有发现deepseek更强的地方。 但是人开源啊,免费啊
s
shushan
ofwlily 发表于 2025-01-27 11:39
那要看你做什么用了。 比如写paper要找citation,目前chatgpt很多时候给的paper驴唇不对马嘴,有的paper压根不存在,估计是它自己根据关键字提取的。 如果给出推里过程,那我可以自己取舍,说不定可以提取到有用的东西。还没尝试deepseak。


我自己测试了专业问题,推理过程有些我自己都没想到,很惊艳
m
masmedi
Riahnna 发表于 2025-01-27 09:35
我看了看youtube上别人做的demo。。u1s1,我对这种把思考过程列出来的真不感兴趣

很多时候我只需要个结果,例如编程,我只需要跑的动就好了,不会想花时间去理解他的思路,copy + paste就完了。跑不动我也不可能一行一行看他思路,肯定是丢个指令回去说跑不动你改改。。




你不需要就不要按那个按钮不就行了?又不是 default 设置。
灌水不要认真
我最近的感受是 Deepseek > Gemini > gpt
h
hi_there
shushan 发表于 2025-01-27 09:51

草牛都不是,就是普通用户
你可以等下午国内的人睡了,服务器负担轻的时候试一下,把deep think和search都激活,问自己领域专业性的问题,deepseek会把参考的搜索信息链接,思考推理过程都给出来的。个人认为这点非常好,别说免费,就是收费被chatgpt贵三倍,因为这些feature我都愿意用。

确实,chatgpt 从来都不给你答案的来源和参考信息,无法验证