1915年广义相对论最初被发表之时,并没有得到稳固的实验证据支持,已知道的是它正确地解释了水星近日点的反常进动,并且在哲学层面,它令人满意地结合了艾萨克·牛顿的万有引力定律和阿尔伯特·爱因斯坦的狭义相对论。1919年,光波在引力场中的轨迹被发现似乎会弯曲,正如广义相对论所预测;但一直要等到1959年,一系列精确度实验才开始进行,从而准确地检验了许多广义相对论在弱引力场极限中的预测,并大大降低了理论于现实偏差的可能性。1974年起,拉塞尔·赫尔斯、约瑟夫·泰勒等人研究脉冲双星的物理行为,其所受到的引力比在太阳系之中要大得多。无论是太阳系中的弱引力场极限,或是脉冲星系统中更强的引力场,广义相对论的预测已有相当优良的实验证据。
这是链接:
爱因斯坦场方程(英语:Einstein field equations)是由阿尔伯特·爱因斯坦于1915年[1]在广义相对论中提出。场方程定义引力为一种几何效应,而时空的曲率则是取决于物质的能量-动量张量。[2]也就是说,如同牛顿的万有引力定律中质量作为引力的来源,亦即有质量就可以产生吸引力,但牛顿的万有引力定律将引力描述成瞬时传播的力,而爱因斯坦认为并不存在所谓的“引力”,他从谐和座标的弱场近似得出弱力场的传递速度为光速,而且场方程只要通过近似手段,如弱场、静态、空间缓变,就能推出牛顿近似。
爱因斯坦重力场方程是用来计算动量与能量所造成的时空曲率,再搭配测地线方程,就可以求出物体在重力场中的运动轨迹。这个想法与电磁学的想法是类似的:当我们知道了空间中的电荷与电流(电磁场的来源)是如何分布的,借由马克士威方程组,我们可以计算出电场与磁场,再借由劳伦兹力方程,即可求出带电粒子在电磁场中的轨迹。
仅在一些简化的假设下,例如:假设时空是球对称,此方程组才具有精确解。这些精确解常常被用来模拟许多宇宙中的重力现象,像是黑洞、宇宙加速膨胀、重力波。如著名的史瓦西解。
1915年广义相对论最初被发表之时,并没有得到稳固的实验证据支持,已知道的是它正确地解释了水星近日点的反常进动,并且在哲学层面,它令人满意地结合了艾萨克·牛顿的万有引力定律和阿尔伯特·爱因斯坦的狭义相对论。1919年,光波在引力场中的轨迹被发现似乎会弯曲,正如广义相对论所预测;但一直要等到1959年,一系列精确度实验才开始进行,从而准确地检验了许多广义相对论在弱引力场极限中的预测,并大大降低了理论于现实偏差的可能性。1974年起,拉塞尔·赫尔斯、约瑟夫·泰勒等人研究脉冲双星的物理行为,其所受到的引力比在太阳系之中要大得多。无论是太阳系中的弱引力场极限,或是脉冲星系统中更强的引力场,广义相对论的预测已有相当优良的实验证据。
这是链接:
广义相对论的实验验证爱因斯坦场方程(英语:Einstein field equations)是由阿尔伯特·爱因斯坦于1915年[1]在广义相对论中提出。场方程定义引力为一种几何效应,而时空的曲率则是取决于物质的能量-动量张量。[2]也就是说,如同牛顿的万有引力定律中质量作为引力的来源,亦即有质量就可以产生吸引力,但牛顿的万有引力定律将引力描述成瞬时传播的力,而爱因斯坦认为并不存在所谓的“引力”,他从谐和座标的弱场近似得出弱力场的传递速度为光速,而且场方程只要通过近似手段,如弱场、静态、空间缓变,就能推出牛顿近似。
爱因斯坦重力场方程是用来计算动量与能量所造成的时空曲率,再搭配测地线方程,就可以求出物体在重力场中的运动轨迹。这个想法与电磁学的想法是类似的:当我们知道了空间中的电荷与电流(电磁场的来源)是如何分布的,借由马克士威方程组,我们可以计算出电场与磁场,再借由劳伦兹力方程,即可求出带电粒子在电磁场中的轨迹。
仅在一些简化的假设下,例如:假设时空是球对称,此方程组才具有精确解。这些精确解常常被用来模拟许多宇宙中的重力现象,像是黑洞、宇宙加速膨胀、重力波。如著名的史瓦西解。
这是原文链接: 爱因斯坦场方程