辛顿在接受电话采访时表示: “ 完全没想到 ” 。
实话实说,在结果出来前,大家也都没想到。
因为在外界预测里,今年的诺贝尔物理学奖最大热门,还是传统的凝聚态物理领域,结果最后颁给了 AI 圈的两位大佬。
网友们也都不淡定了,有些人调侃地表示,物理学不存在了。
也有人表示,这次的颁奖可能会引起一系列连锁反应。
一些人甚至有种感觉,诺贝尔奖有点蹭 AI 热度的意思?
其实物理学界也不是没什么新的研究成果,隔壁中科院物理所就猜了一堆足以拿诺奖的研究,谁知道直接“ 跨服 ”颁给了人工神经网络和机器学习领域。
而借着这个机会,我们也去了解了下两个大佬,发现人家的成就能拿奖完全说得过去。
首先是杰弗里 · 辛顿,这个大佬大家肯定不陌生了,再和大家强调一遍,他是公认的 “ 深度学习之父 ” 。
就这么说吧,千年以后,人类回顾豪门望族,辛顿家的族谱可能还是最闪耀的那一批,国内的什么四世三公都得逊色一番。
在辛顿家族中,最顶的就是他的曾曾祖父乔治 · 布尔,人称逻辑学中的牛顿。
乔治和自己老婆也就是辛顿的曾曾祖母玛丽 · 埃弗里斯 · 布尔,共同创作了布尔逻辑和代数学,后来成为现代计算机的数学基础。
而这个玛丽的叔叔乔治 George Everest 是英国大地测量学家,珠穆朗玛峰的英文名就是以他名字Everest 命名的。
辛顿的家族还特别和中国有缘。
他的曾姑妈艾捷尔 · 丽莲 · 伏尼契,写了本书叫《 牛虻 》,曾激励了一代国内革命青年。
而他还有个姑妈名叫琼 · 辛顿,中文名叫寒春( 咱们曾经写了一篇文章来介绍寒春,感兴趣的差友可以点击下方图片阅读原文 )。
这个姑妈曾经参与过曼哈顿计划。
后来因为多方原因,毅然决然地弃美投中。
所以,咱们今天的主角辛顿在花了一辈子的时间,同时获得了诺尔物理学家和图灵奖,回家一看,也就只是能在族谱单开一页的水平?
而辛顿如今风光的名号,一路走来却压根并不轻松。
从小时候起,他的学习成绩就谈不上 “ 顶尖 ” 。
8 岁的辛顿正在尝试熟练地掌握 python ( 蟒蛇 )
也就是在克里夫顿学院,辛顿从一个同学那儿听说了 “ 大脑记忆并不固定存在某个部分,而是分散在是整个大脑,利用整个神经网络传播,如果大脑使用全息图,砍掉一半,还能获得整个图片…… ”
好好好,我高中同学咋天天只会跟我 “ 桀桀桀 ” 呢?
辛顿当时估计也没整明白,就把这个小故事深埋心底,随后就开始了自己的浪荡前半生。
到了 18 岁,辛顿进入剑桥大学国王学院学习物理、化学和数学,但一个月后就退学了。
去伦敦 gap 了一年后改修建筑学,结果就撑了一天,甚至后来,辛顿也尝试过转向哲学,不过也没坚持住。
再后面,辛顿就开始双修物理和生理学,到最后,哥们拿了实验心理学毕业证。。。
这种到处乱晃的水平,也让辛顿总是被家里人 PUA ,他爸天天念叨 “ 你要好好努力,等你比我老一倍了,就能赶上我一半的成绩了 ” 。
我估摸着,辛顿老爹如果在天有灵,这下总能感觉自己被打脸了。
总之,在尝过了弱水三千后,辛顿找到了只属于他的那一瓢:人工智能。
在当时,人工智能谈不上什么大热研究方向,他找了一个正在研究神经网络的导师希金斯教授,这一下就唤醒了辛顿年少时的记忆: “ 我要的就是让机器实现大脑功能 ” 。
但在生成式大模型爆火之前, AI 界一直在争论什么才是正确路线,神经网络、深度学习一度被符号主义( 简单说就是所有事物、规则都能用一个个符号来代替, AI 通过记住这些符号和规则来理解世界 )等路线打得溃不成军。
最夸张的时候,就连希金斯教授,都转投符号主义门下,希金斯甚至还反过来劝辛顿也点了,重开一把得了。
希金斯教授
一时间,神经网络被所有人放弃,世界上几乎只剩下辛顿这一个独苗了。
结果辛顿也就是头铁,愣是一个人守高地 30 多年,发育到六神装,一把反推了其他 AI 路线的高地。
而辛顿这次获奖凭借的就是他在这几十年里的成果之一:1985 年提出的 “ 玻尔兹曼机 ” 。
玻尔兹曼机能够像人一样自主学习。
比如你给它看不停地看很多火锅的帅照,就能生成一张新的,看起来很像火锅的大金毛图像。
这也就是后来的深度学习、人工神经网络的雏形。
随着研究不断深入,辛顿也逐渐开创了一个新的学术分支:深度学习。
后来,辛顿还带着前 OpenAI 首席科学家 Ilya 创办了个 DNNresearch 的公司,这家公司当时没有任何产品,而且也没有任何计划研究任何产品,说白了他们公司的产品就是他们几个人的脑子。
他们决定把 DNN 也就是他们自己,公开向全世界拍卖,最终百度、谷歌、微软和 DeepMind 四家公司竞争。
当竞价达到 4400 万美元时,他们暂停了竞拍,然后直接把天赋带到了谷歌。
在他们看来,合适的平台比更高的价格更重要。
但到了去年,辛顿主动选择从谷歌离职,就为了能够自由谈论 AI 的风险。
可现如今,大家将他在后悔的工作捧上诺贝尔奖台,
辛顿这次获奖也在学术圈引起了不少争议,因为辛顿的工作成就虽然很出色,但它们显然并不属于传统物理学的任何一个分支。
与之不同的是,和辛顿一同得奖的霍普菲尔德,就显得 “ 正统 ” 了不少。
因为霍普菲尔德虽然以 AI 领域的工作内容获奖,但他其实是个地地道道的生物物理学家,曾经拿到过玻尔兹曼奖( 统计物理领域最高奖 )和狄拉克奖( 理论物理学的重要奖项 ),比起辛顿来说完全就是纯血物理人。
霍普菲尔德的家族虽然不比辛顿,但也是顶尖书香门第,父母亲都是知名物理学家。
学习生涯比起辛顿的放荡不羁来说,就更显得纯血物理人了。
1933 年出生于芝加哥,从物理学士,到物理博士,一步步按部就班。
而他获奖的成果是 1982 年提出了霍普菲尔德网络,让 AI 能够像人类联想记忆那样,存储和重建信息模式。
打个比方,你在试图回忆一个不常用的成语,可能会先想他的近义词啥的,最终想起了这个成语。
霍普菲尔德网络的工作方式就与此类似,当给 AI 一个不完整的信息时,它能够找到最相似的存储信息。
这么一来,霍普菲尔德网络就能修复损坏的数据,比如去除图片中的噪点。
乍一听,这个玩意儿根本不物理,反而很 AI 是吧。
材料内的原子会因为自旋而产生的特性,这个特性使得每个原子都成为了 mini 磁铁,大家互相有着不同的引力。
数据的存储在不同引力下,就好比一个层峦叠嶂的景观中,当网络接收到新的输入时,就像在这个景观中滚动一个球,最终球会根据不同的沟壑( 即引力 )停在最接近的山谷中,也就是找到了最相似的存储模式。
更重要的是,霍普菲尔德将神经网络的动力学,与物理学中的系统 ( 特别是统计力学 ) 进行了比较和融合。
这种跨学科方法是革命性的,为后来的研究者们打开了新思路。
总之,霍普菲尔德的获奖也是相当实至名归的。
但无论怎么说, AI 的风已经吹到了诺贝尔奖了,在诺贝尔物理学委员会看来,如今的人工神经网络已经为物理学带来了新的使用场景,比如开发具有特定属性的新材料等等。
而这些成就,显然足以抹去什么学科之见。
很难想象,在 AI 发展如此迅猛的未来,人们竟然还在争论它到底配不配得物理学奖,而差评君想说的是:
既见未来,为何不拜?
辛顿在接受电话采访时表示: “ 完全没想到 ” 。
实话实说,在结果出来前,大家也都没想到。
因为在外界预测里,今年的诺贝尔物理学奖最大热门,还是传统的凝聚态物理领域,结果最后颁给了 AI 圈的两位大佬。
网友们也都不淡定了,有些人调侃地表示,物理学不存在了。
也有人表示,这次的颁奖可能会引起一系列连锁反应。
一些人甚至有种感觉,诺贝尔奖有点蹭 AI 热度的意思?
其实物理学界也不是没什么新的研究成果,隔壁中科院物理所就猜了一堆足以拿诺奖的研究,谁知道直接“ 跨服 ”颁给了人工神经网络和机器学习领域。
而借着这个机会,我们也去了解了下两个大佬,发现人家的成就能拿奖完全说得过去。
首先是杰弗里 · 辛顿,这个大佬大家肯定不陌生了,再和大家强调一遍,他是公认的 “ 深度学习之父 ” 。
我们今天也详细去查了下辛顿老爷子,震惊我的反倒不是他自己的成就,而是他实在是家世显赫。就这么说吧,千年以后,人类回顾豪门望族,辛顿家的族谱可能还是最闪耀的那一批,国内的什么四世三公都得逊色一番。
在辛顿家族中,最顶的就是他的曾曾祖父乔治 · 布尔,人称逻辑学中的牛顿。
乔治和自己老婆也就是辛顿的曾曾祖母玛丽 · 埃弗里斯 · 布尔,共同创作了布尔逻辑和代数学,后来成为现代计算机的数学基础。
而这个玛丽的叔叔乔治 George Everest 是英国大地测量学家,珠穆朗玛峰的英文名就是以他名字Everest 命名的。
辛顿的家族还特别和中国有缘。
他的曾姑妈艾捷尔 · 丽莲 · 伏尼契,写了本书叫《 牛虻 》,曾激励了一代国内革命青年。
而他还有个姑妈名叫琼 · 辛顿,中文名叫寒春( 咱们曾经写了一篇文章来介绍寒春,感兴趣的差友可以点击下方图片阅读原文 )。
这个姑妈曾经参与过曼哈顿计划。
后来因为多方原因,毅然决然地弃美投中。
来到中国后的她放弃了自己擅长的核物理研究,但寒春对新的奶牛事业乐在其中,甚至还为国内巴氏杀菌奶设计了一条产线。所以,咱们今天的主角辛顿在花了一辈子的时间,同时获得了诺尔物理学家和图灵奖,回家一看,也就只是能在族谱单开一页的水平?
而辛顿如今风光的名号,一路走来却压根并不轻松。
从小时候起,他的学习成绩就谈不上 “ 顶尖 ” 。
高中时上了一所他口中的 “ 二流公立学校 ” 克里夫顿学院,但实际上,该学院在辛顿之前出过 3 名诺奖得主,大家听听得了,别真信了。8 岁的辛顿正在尝试熟练地掌握 python ( 蟒蛇 )
也就是在克里夫顿学院,辛顿从一个同学那儿听说了 “ 大脑记忆并不固定存在某个部分,而是分散在是整个大脑,利用整个神经网络传播,如果大脑使用全息图,砍掉一半,还能获得整个图片…… ”
好好好,我高中同学咋天天只会跟我 “ 桀桀桀 ” 呢?
辛顿当时估计也没整明白,就把这个小故事深埋心底,随后就开始了自己的浪荡前半生。
到了 18 岁,辛顿进入剑桥大学国王学院学习物理、化学和数学,但一个月后就退学了。
去伦敦 gap 了一年后改修建筑学,结果就撑了一天,甚至后来,辛顿也尝试过转向哲学,不过也没坚持住。
再后面,辛顿就开始双修物理和生理学,到最后,哥们拿了实验心理学毕业证。。。
毕业后的辛顿又跑去当了一年木匠。这种到处乱晃的水平,也让辛顿总是被家里人 PUA ,他爸天天念叨 “ 你要好好努力,等你比我老一倍了,就能赶上我一半的成绩了 ” 。
我估摸着,辛顿老爹如果在天有灵,这下总能感觉自己被打脸了。
总之,在尝过了弱水三千后,辛顿找到了只属于他的那一瓢:人工智能。
在当时,人工智能谈不上什么大热研究方向,他找了一个正在研究神经网络的导师希金斯教授,这一下就唤醒了辛顿年少时的记忆: “ 我要的就是让机器实现大脑功能 ” 。
但在生成式大模型爆火之前, AI 界一直在争论什么才是正确路线,神经网络、深度学习一度被符号主义( 简单说就是所有事物、规则都能用一个个符号来代替, AI 通过记住这些符号和规则来理解世界 )等路线打得溃不成军。
最夸张的时候,就连希金斯教授,都转投符号主义门下,希金斯甚至还反过来劝辛顿也点了,重开一把得了。
希金斯教授
一时间,神经网络被所有人放弃,世界上几乎只剩下辛顿这一个独苗了。
结果辛顿也就是头铁,愣是一个人守高地 30 多年,发育到六神装,一把反推了其他 AI 路线的高地。
而辛顿这次获奖凭借的就是他在这几十年里的成果之一:1985 年提出的 “ 玻尔兹曼机 ” 。
玻尔兹曼机能够像人一样自主学习。
比如你给它看不停地看很多火锅的帅照,就能生成一张新的,看起来很像火锅的大金毛图像。
这也就是后来的深度学习、人工神经网络的雏形。
随着研究不断深入,辛顿也逐渐开创了一个新的学术分支:深度学习。
而今天你能看到活跃在生成式大模型顶端的辣些人,基本全是辛门成员,所以,你甚至可以说辛顿是当今所有大模型的唯一指定祖师爷。后来,辛顿还带着前 OpenAI 首席科学家 Ilya 创办了个 DNNresearch 的公司,这家公司当时没有任何产品,而且也没有任何计划研究任何产品,说白了他们公司的产品就是他们几个人的脑子。
他们决定把 DNN 也就是他们自己,公开向全世界拍卖,最终百度、谷歌、微软和 DeepMind 四家公司竞争。
当竞价达到 4400 万美元时,他们暂停了竞拍,然后直接把天赋带到了谷歌。
在他们看来,合适的平台比更高的价格更重要。
但到了去年,辛顿主动选择从谷歌离职,就为了能够自由谈论 AI 的风险。
在如今的他看来, AI 已经在朝一个人类无法掌控的地步进化,他甚至在去年曾经在接受采访时表示,自己回顾一生的工作,感到非常后悔,以至于只能找一个 “ 哪怕自己不做这些,也有其他人来做 ” 的借口来安慰自己。可现如今,大家将他在后悔的工作捧上诺贝尔奖台,
辛顿这次获奖也在学术圈引起了不少争议,因为辛顿的工作成就虽然很出色,但它们显然并不属于传统物理学的任何一个分支。
与之不同的是,和辛顿一同得奖的霍普菲尔德,就显得 “ 正统 ” 了不少。
因为霍普菲尔德虽然以 AI 领域的工作内容获奖,但他其实是个地地道道的生物物理学家,曾经拿到过玻尔兹曼奖( 统计物理领域最高奖 )和狄拉克奖( 理论物理学的重要奖项 ),比起辛顿来说完全就是纯血物理人。
霍普菲尔德的家族虽然不比辛顿,但也是顶尖书香门第,父母亲都是知名物理学家。
学习生涯比起辛顿的放荡不羁来说,就更显得纯血物理人了。
1933 年出生于芝加哥,从物理学士,到物理博士,一步步按部就班。
毕业后先后在贝尔实验室任职,在大学任教,在 NASA 做研究。。。而他获奖的成果是 1982 年提出了霍普菲尔德网络,让 AI 能够像人类联想记忆那样,存储和重建信息模式。
打个比方,你在试图回忆一个不常用的成语,可能会先想他的近义词啥的,最终想起了这个成语。
霍普菲尔德网络的工作方式就与此类似,当给 AI 一个不完整的信息时,它能够找到最相似的存储信息。
这么一来,霍普菲尔德网络就能修复损坏的数据,比如去除图片中的噪点。
乍一听,这个玩意儿根本不物理,反而很 AI 是吧。
其实并不是,霍普菲尔德网络的存储和检索方式,利用了材料的物理特性。材料内的原子会因为自旋而产生的特性,这个特性使得每个原子都成为了 mini 磁铁,大家互相有着不同的引力。
数据的存储在不同引力下,就好比一个层峦叠嶂的景观中,当网络接收到新的输入时,就像在这个景观中滚动一个球,最终球会根据不同的沟壑( 即引力 )停在最接近的山谷中,也就是找到了最相似的存储模式。
更重要的是,霍普菲尔德将神经网络的动力学,与物理学中的系统 ( 特别是统计力学 ) 进行了比较和融合。
这种跨学科方法是革命性的,为后来的研究者们打开了新思路。
总之,霍普菲尔德的获奖也是相当实至名归的。
但无论怎么说, AI 的风已经吹到了诺贝尔奖了,在诺贝尔物理学委员会看来,如今的人工神经网络已经为物理学带来了新的使用场景,比如开发具有特定属性的新材料等等。
而这些成就,显然足以抹去什么学科之见。
很难想象,在 AI 发展如此迅猛的未来,人们竟然还在争论它到底配不配得物理学奖,而差评君想说的是:
既见未来,为何不拜?