which country bomb nord stream bomb 💣,
fkin USA chernobyl disaster. do u remember?
~~~~~~~~~~
retarded g8. 又来造谣
!!! whole fuckin fAmily die.
anti China dogs, read the article before say shit. if you still have problems, than your whole families retarded..
anti China fuckin doggs, forgot take your psycotic meds today . real bad hallucinations too, must take whole bottle at a time....
#####
°
™
注意:这则报道是10个反华媒体的联合力作。所以,要往反方向解读。
Don\\\'t leave any comments, these fucking anti China dogs begging for more comments, fuckin 1cent income for these two legged crazy doggs .
don\\\'t fall to that . without any comments these anti China dogs don\\\'t even have shitts to eat. NbmSL all anti China fuckin crazy doggs...
小编就是个狗娘养的,总是想方设法把各类反华文章拼凑到一起,然后打着相对中立媒体的名义,进行污蔑祖国的勾当,留园网实为反华造谣网站,大家要提高免疫力,坚决反对其各种造谣污蔑。
g8
又来造谣
3月10日,上海科技大学官网发布消息称,上海科技大学物质科学与技术学院陆卫教授课题组近日在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态(pump-induced magnon mode, PIM)。此项发现为磁子电子学和量子磁学的研究打开了全新的维度。
该成果发表在物理学领域旗舰期刊《物理评论快报》(Physical Review Letters)上。
论文的标题是《一种与沃克模式强相互作用的光诱导磁子态》(Unveiling a Pump-Induced Magnon Mode via Its Strong Interaction with Walker Modes)。
上述消息称,陆卫教授团队的发现,突破了“垄断”该领域长达60多年的“Walker modes”这一范畴,发掘了新的磁子态,或可在雷达、通讯、信息无线传输等领域使用。
新的磁子态
1956年,美国新泽西州贝尔电话实验室的工作人员沃克(L. R. Walker)撰写论文,给出了磁性块体空间受限磁子态的数学描述,随后其论文发表,这一磁子态被称为Walker modes。在随后的60多年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。
电子科技大学物理学院、电子薄膜与集成器件国家重点实验室严鹏教授等人2023年发表在中文学术期刊《物理学报》上的综述文章《磁子学中的拓扑物态与量子效应》一文介绍,量子化的自旋波称为磁子(magnon)。
而自旋波(spin wave)是磁性体系中自旋进动的集体激发态,最早由物理学家布洛赫(Bloch, 1952 年诺贝尔物理学奖获得者)于1930年提出,用来解释铁磁体自发磁化强度随温度变化的重要规律,随后在1957年被物理学家布罗克豪斯(Brockhouse, 1994年诺贝尔物理学奖获得者)采用非弹性中子散射实验所证实。
自旋波的波长可以小到几个纳米, 能够提高信息的存储密度, 有利于磁子器件的微型化和高集成度。而且,自旋波的传输不涉及电子的运动, 既可以在磁性金属中传播, 也可以在磁性绝缘体中传播, 避免了由于焦耳热产生的功耗。
每个磁子携带一个约化普朗克常量的自旋角动量,因此,磁子也可以像电子一样承载和传递自旋信息。磁子学的主要目的就是将信息载体替换为自旋波, 通过自旋波来进行信息传输和逻辑计算。此前的信息载体是电子的电荷或自旋属性。
上海科技大学上述消息称,磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。宏观磁性的起源主要是材料中未配对的电子。电子有两个众所周知的基本属性:电荷与自旋。前者是所有电子器件操控的对象。而自旋,尤其是磁性绝缘体中的自旋,能够完全避免传导电子的欧姆损失,充分发挥自旋长寿命、低耗散的优势,因此对于开发自旋电子学器件意义重大。磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。
最新发表的研究发现,在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波,该自旋波可被命名为“光诱导磁子态(pump-induced magnon mode, PIM)”。
光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到,并能被激励微波调控。
电子的自旋示意图:上自旋(左)和下自旋(右)。来自《候鸟的量子力学:自旋、纠缠态与地磁导航》一文。
中国科学院高能物理研究所官网关于“电子自旋”的介绍称,出于量子场论的需要,自旋概念被引入。不但电子存在自旋,中子、质子、光子等所有微观粒子都存在自旋,只不过取值不同。自旋和静质量、电荷等物理量一样,也是描述微观粒子固有属性的物理量。自旋为0的粒子像一个圆点:从任何方向看都一样。而自旋为1的粒子像一个箭头:从不同方向看是不同的。
自旋不同于自转。中国科学院高能物理研究所微信公众号发布的《候鸟的量子力学:自旋、纠缠态与地磁导航》一文介绍,我们无法从经典的角度来理解自旋。目前的理论和实验都没有发现电子的半径下限,因此电子是被当作点粒子来对待的。根据泡利不相容原理,两个电子不能处在同一个状态上,因此原子核周围的电子一般都是成对分布的,一个原子轨道上可以容纳两个电子,一个自旋向上,一个自旋向下。这两个电子的自旋取向不能相同,处在一种关联的状态,也就是我们通常所说的量子纠缠态。
激发态被用于描述原子、分子等吸收能量后,电子被激发到更高能级的状态。此后,电子可能在短时间内向较低能级跃迁,释放出一定的能量,比如释放出光子,或返回基态。
不存在电子噪声,可用于雷达精准探测
上海科技大学上述消息称,芯片的研发主要遵循着摩尔定律,即每18个月到两年间,芯片的性能会翻一倍。然而,随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。基于磁性材料发展建立的自旋电子学以及磁子电子学发展迅猛,为突破上述限制提供了出路。
研究团队还发现,最新发表的光诱导磁子态具有丰富的非线性,这种非线性会产生一种磁子频率梳。
频率梳(上)。非线性磁振子-斯格明子散射(magnon-skyrmion scattering)产生自旋波频率梳示意图。来自《Magnonic Frequency Comb through Nonlinear Magnon-Skyrmion Scattering》。
相较于微波谐振电路中产生的频率梳,这一新型频率梳不存在电子噪声,因此,有望在信息技术中实现超低噪声的信号转换。
“常规磁子强耦合态依赖于谐振腔才能构建……我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。这样的开放边界下的耦合态有望像乐高一样有序组合,获得丰富的功能性。”团队负责人陆卫教授表示。
陆卫表示,“我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测,我们的频率梳必然能在这些领域中发挥作用。”
陆卫解释,频率梳就像是一把游标卡尺,能够对频谱上的风吹草动进行精准的测量。此前人们发现的光学频率梳(光频梳)就在原子钟、超灵敏探测中展现了令人惊叹的精度。
该研究工作由上海科技大学、中国科学院上海技术物理研究所和华中科技大学三家单位共同完成,上海科技大学为第一完成单位。论文第一作者是上科大物质学院助理研究员饶金威,通讯作者是上科大物质学院陆卫教授、中科院上海技物所姚碧霂副研究员和华中科技大学于涛教授。
论文链接:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.046705