when the companies completely live independently with the government, then greatest innovation will happen.
same also happens with those people always talking about patriotism. their points will stand out without any "patriotism".
xiaoxiao雨: 帮你改第一句英文: If a company completely lives independently with a government, greatest innovation will happen. 后两句懒得改了。 the companies 和 the government 是最大的错误, 很显然, 你不是特指,是泛指, 而你却用定冠词。 英文修养尚需提高。
最近这一周,有一个科技新闻传的很厉害,说清华大学弄出了一种新的产生极深紫外光源的原理,可以突破光刻机的卡脖子技术难题,甚至还有很多人传说我国已经在雄安开始建设光刻工厂了,还有图有真相,说得有鼻子有眼。
很多人来问我是不是真的,我先说答案:新的光源产生原理是真的,但那个早在 2010年就提出了,目前还处在原理验证阶段,离真正实用少说也还有 15 到 20年的时间。而这次热炒的清华大学的论文其实也是 2021 年初就发表了,不知道为什么两年半后突然被挖坟出来热炒。至于雄安建什么光刻厂云云,那就是以讹传讹,子虚乌有了。
今天刚好借着这个话题,来跟大家聊聊造一个光刻机为什么那么难,中国有没有可能完全独立自主研发出最先进的光刻机。
光刻机就是用来生产芯片的关键设备,我们用的每一台电脑,每一台智能手机中的芯片就是用光刻机生产出来的。
衡量一块芯片的工艺先进程度,用的是 xx 纳米(nm)这样一个单位。纳米是个长度单位,1 纳米等于 10亿分之一米。前两周华为不是出了一款最新的手机 Mate 60 pro 吗,这手机一出来,大家就惊呼,哇,这款手机用的芯片是 7nm 制程的,不得了。这里解释一下 7nm 制程是什么意思,简单来说,芯片上的电子元件,也就是晶体管,是被刻出来的,就好像我们在橡皮图章上科字。在同样的面积上,能刻出来的晶体管越多,芯片也就越先进。在芯片领域,就是用多少多少 nm (纳米)来表示芯片的先进程度,数字越小表示芯片越先进。10nm 的比 14nm 先进,7nm 比 10nm 先进,你不要纠结为什么是 5、7、10、14 这样数字,这背后有复杂的历史成因。
芯片是用激光在硅片上刻出来的,所以,要把晶体管刻得越小,就需要波长越短的激光。现在全世界最先进的光刻机用的光源叫极深紫外光,英文简称为EUV,波长是13.5纳米,它是美国公司研发出来的,但这家美国公司现在被荷兰的阿斯麦公司收购了。不过这里要弄清一个概念,不是说 13.5 纳米波长的激光就只能刻 13.5 纳米的芯片,它其实能刻 7 纳米,5 纳米,甚至更小制程的芯片。
比EUV更差一点的光刻机用的光源是深紫外光,英文简称DUV,波长是 193 纳米,比 EUV 大了一个数量级。华为最新手机用的那个 7nm 制程麒麟 9000s 芯片就是用 DUV 刻出来的,是的,193 纳米的波长,利用一种叫做多重曝光的技术就可以刻出 7nm 的芯片。但就是这种 193 纳米的光刻机,我国现在也还是造不出,能造出 DUV 的全世界也只有日本的佳能和尼康,以及荷兰的阿斯麦公司。对,你没听错,美国也不行。
这里顺便插一句什么是多重曝光技术。我用一个最简单的比方来试着说明一下,比如说,现在你有一个画正方形格子的机器,但它能画出来的正方形的格子的边长是 100毫米,你有没有办法利用这个机器画出小于 100毫米的正方形格子呢?是可以的。方法就是我先在纸上画很多连在一起的格子,形成网格。然后我把机器稍稍挪动一下位置,在这张纸上再画一次,这样又会画出一个新的网格,两个网格重叠在一起,线条就会交错形成更小的格子。你自己可以拿笔在纸上试一下。
光刻机每次刻芯片的过程就是一次曝光,用 DUV 去生产 7nm 制程芯片也是一样的,一次没办法,就多曝光几次,每次曝光之后就移动一小步再曝光。这样就可以刻出更小的晶体管。当然了,这样做也不是没有副作用的,那就是出错的可能性也更大了,大规模生产的话,会有很多失败的芯片浪费掉。用专业术语来说,就是芯片的良率比较低,次品率比较高。
我们回到正题,制造一台光刻机有多难呢?
我先定个性,光刻机是目前为止,人类有能力制造的最精密和复杂的机器,没有之一。一台光刻机,有三大关键部分组成。第一部分是光源、第二部分是光学系统、第三部分是蚀刻工作台。每一部分的技术挑战都堪比登月。
先说光源。要产生 13.5 纳米波长的极深紫外光,目前的做法是用高功率的激光轰击一个直径只有三千万分之一米的小锡球(就是金属锡的锡)。但这一句话不足以描述它的难度,我需要展开来说。
首先要让一束激光准确击中正在以时速大约 200英里运动的小锡球,等小锡球的温度达到 50万度时,会成为锡等离子体,这时再用一束激光轰击它,这时就能产生波长 13.5 纳米的极深紫外光。要持续稳定产生这种紫外光,需要以每秒钟大约 5 万次的频率轰击小锡球。这种激光器全世界只有一家德国公司能生产,这家叫通快的德国公司用了十年时间才研发成功,单单是这台激光器就有 45700多个零件。但你可能没想到,通快公司的这台激光器又依赖于一家立陶宛的公司提供关键设备,没有这家立陶宛公司制造的光源设备,通快公司也不行,简直就是螳螂捕蝉黄雀在后的既视感。下一个难关是如何把这种极深紫外光收集起来,形成一束极深紫外光的激光呢?这就是下一个关键部分。
光学系统。为 EUV 研制的这套光学系统全世界也只有一家德国公司能制造,它就是大名鼎鼎的蔡司公司。你可能听说过蔡司生产的相机镜头是世界上最好的镜头之一,可是相机镜头与 EUV 光学系统用的镜头比起来,那就好像是螺旋桨撒农药的飞机和喷气式战斗机的差别了。这套光学系统至少涉及以下这些技术挑战:高精度非球面加工,多层膜反射镜,高质量熔炼,离子束抛光技术,极限精度磨制。刚才说的这一串技术名词你不必深究,你只需要知道,最终的目标是要制作出一片绝对光滑平整的镜片,要光滑到什么程度呢?就是三体中水滴的那种光滑程度,镜片的起伏就是大约一个原子的误差,接近理论上的物理极限。如果用蔡司自己的宣传比喻,就是把这片镜片放大到整个德国那么大,起伏也没超过0.1 毫米。如果一个病毒落在这片镜子上,那就好像拔地而起一座百米小山。所以,这套光学系统必须工作在真空中,不能有任何一点点的干扰。但有了光源和镜头还远远不够,这只是好比我们有了科字的刻刀,接下去一步是要在指甲盖大小的硅片上刻出几百亿个晶体管。
精密仪器工作台。为了把几百亿个晶体管刻成,我们需要一个精度极高极高的控制台,我很难找到准确的比喻来形容它的制造难度。这个控制台有 55000个高精度的零件构成,而这些零件又至少依赖于日本、韩国、中国台湾、美国、德国以及荷兰自己提供的专利技术,少了任何一个都不行。
以上这些,大概就是制造一台目前世界上最先进的光刻机的难度。它的研发历史大概是这样,1997 年,英特尔公司和美国能源部共同投资一家公司,开始研制 EUV 光刻机。在 6 年的时间中,这家公司研发了绝大部分的核心专利技术。但英特尔和美国能源部都不打算自己造光刻机,因为他们觉得造光刻机其实不挣钱,还不如把核心技术授权给一家外国公司,让他们去造光刻机。后来,荷兰的阿斯麦公司拿到了这些核心技术的授权,然后在三星和台积电等公司的帮助下,终于在 2010年生产出了第一台 EUV 光刻机的原型机,又测试、优化、升级了 9 年,最终在 2019 年生产出了第一台可以正式投入商业生产的 EUV 光刻机,总共历时 22 年。
然而,虽然 EUV 光刻机是荷兰的阿斯麦公司生产的,但它也不过就是一个组装厂,只有 15%的零件是自主生产的,其他 85%的零件依靠进口。又因为美国能源部拥有光刻机几乎所有的核心专利,所以,阿斯麦生产光刻机,需要美国能源部的授权。这就是为什么假如美国政府说不准把光刻机卖给中国,荷兰的阿斯麦公司只能听它的原因。可以说,一台EUV光刻机是七、八个国家围成一个圈,卡着阿斯麦的脖子。
中国想要突破技术封锁,独立生产光刻机,就需要在全部三大关键部分上实现完全的自主创新。我们现在只能说,在第一个光源部分,我们看到了一点点希望。
2010年,斯坦福大学的华人教授,同时也是清华杰出访问教授赵午与他的博士生一起提出了一种产生极深紫外光源的新原理,这种原理被称为“稳态微聚束”,英文简称 SSMB,就是利用巨大的粒子加速器来产生极深紫外光。2017年,清华大学的唐传祥教授团队与德国的同行一起合作,完成了实验的理论分析和物理设计,并开发测试实验的激光系统,进行了一定的原理验证。2021 年2 月,他们的论文在《自然》杂志上成功发表[1],唐教授的博士生邓秀杰是第一作者,唐教授和德国亥姆霍兹柏林材料与能源研究中心的另外一位教授是通讯作者。这里顺便提一下学术圈的一般规则,第一作者一般是指该研究课题中贡献最大的人,而通讯作者则是课题的负责人和成果受益人。
到了 2022 年 3 月,唐传祥教授和邓秀杰博士又在我国的《物理学报》上发表了同名论文[2],可能他们自己也没想到,一年多后,不知道什么原因,大概是在 2023 年的 9 月 13 日,不知道是哪个自媒体发了个视频,标题很那个啥,叫《逆天了!清华大学SSMB-EUV光源横空出世,功率达到EUV光刻机40倍》,然后,仿佛一把火,各个自媒体平台都开始以各种“逆天了”三个字开头为题,来热炒清华大学的这个 SSMB 方案,看得我都傻了。
我希望大家冷静的是,我们现在离实现生产极深紫外光刻机还有十万八千里,千万别上头。首先,清华的官网上说,2021 年,唐传祥教授就已经向国家发改委申报把 SSMB 实验装置列为十四五国家重大科技基础设施。但是,我没有查到任何立项的新闻。注意,这种民用科研项目不是军事项目,不需要保密,立项都是需要公示的。也就是说,至少到目前为止,这个项目连立项都没有立项。
我们就算乐观一点,明年立项。这种级别的科研装置,没有个 5 年是很难建成的。然后建成了以后我们再乐观点,搞个 3 年测试成功,然后再花 5 年建成可以商用的光源。这就 13 年过去了。但是,光刻机的另外两个关键部分能不能在这 13 年中搞成呢?现在连个影子也还没有。
而且,我们不知道再过 13 年,美国人、荷兰人是不是又搞出了更先进的下一代光刻机,我们还得继续追。
最后我想说一句个人不中听的观点:
在 20年之内,这个世界上不可能有任何一个国家可以完全独立自主的造出一台代表国际最先进水平的光刻机,美国也不例外。
当然,这只代表我个人的一点浅见,我很希望被打脸。
我为什么要把这个观点说出来,是因为我真的不希望过去大跃进的悲剧重演,中国人是很聪明,但并不意味着我们中国人就是特殊材料的人,全世界所有的种族都是人科、人属、智人种,中国人和外国人的基因几乎没有差异,我们不比外国人笨,但也并不比外国人聪明很多。
实事求是才是发展科学技术的正道,光刻机这样超级精密复杂的机器,寻求最大范围的国际合作才是最佳解决方案。